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A method is described which allows one to estimate the contributions of the internal modes of a mole- 
cule to the Debye-Waller factors of the individual atoms. The contributions obtained are the average 
of the isotropic mean-square amplitudes over all atoms in the molecule having the same mass. For 
evaluating the contributions one needs to know only the frequencies of the internal modes of the mole- 
cule, as determined from infrared and Raman data, but not the force constants. Furthermore, a rough 
formula is derived which allows one to estimate the contributions of the internal modes to the vibrations 
of a given atom only from the number of the atoms in the molecule and from the mass of the respective 
atom. Numerical results are presented for the structures of benzene, naphthalene, and anthracene. 

I. Introduction 

Structures which contain nearly rigid molecules are 
often refined with thermal rigid-body parameters. 
These parameters can be determined either from the 
vibration tensors of the individual atoms of the mol- 
ecule or - via the vibration tensors - from intensity 
data. However, there are not only the external modes 
of the molecules which contribute to the vibration 
tensors of the atoms but also the internal modes and 
thus the question arises to what extent the determina- 
tion of the thermal rigid-body parameters from the 
vibration tensors will be disturbed or rendered inap- 
propriate. The contributions of the internal modes of 
molecules are commonly judged to be small and thus 
liable to be neglected. Many successful refinements of 
structures with thermal rigid-body parameters seem to 
have confirmed this opinion. Furthermore, Higgs 
(1955) has calculated the contributions of the internal 
modes to the vibration tensors of the carbon atoms of 
naphthalene from a force-constant model and found 
them to amount to only about 3.2 %. Recently John- 
son (1970) has calculated the mean-square amplitudes 
of the internal modes for the benzene and cyclobutane 
molecule from a complete force-constant model. He 
found that the mean-square amplitudes of the carbon 
atoms are small enough to be neglected whereas those 
of the hydrogen atoms are large. They amount to more 
than 10% of the contributions of the external modes. 
Some authors have determined the mean-square 
amplitudes of the internal modes by using approximate 
force-constant models, and subtracted these amplitude 
values from the vibration tensors of the individual 
atoms before the rigid-body vibration tensors were cal- 
culated. Becka & Cruickshank (1963) calculated the 
mean-square amplitudes of the internal modes for the 
carbon and nitrogen atoms in hexamethylenetetramine 
by assuming a force constant model with rigid CHz 
groups. Johnson (1970) used the force constants ot 
the benzene molecules to correct for the contributions 
of the internal modes in phenyl groups, and Ellison, 

Johnson & Levy (1971) used the force constants of 
the methylene chloride molecule to correct for the 
contributions of the internal modes in glycolic acid. 
Recently Pawley (1971), inspired by Johnson's (1970) 
calculations on benzene, took into account the con- 
tributions of the internal modes to the hydrogen 
atoms of pyrene by refining a common temperature 
factor for the hydrogen atoms. He applied the same 
procedure to the deuterium atoms of deuterated 
naphthalene and anthracene. In this procedure Pawley 
used three anisotropic components which were fitted 
to the anisotropy of the motions of the hydrogen atoms 
in the benzene molecule. These three additional param- 
eters proved to be highly significant in the least-squares 
refinement which suggests that for these molecules the 
contributions of the internal modes to the hydrogen 
and deuterium atoms are substantial. 

Unfortunately, the force constants of the internal 
vibrations are unknown for most molecules. As a 
rule there are more force constants than normal fre- 
quencies for a molecule so that the number of spec- 
troscopically measured frequencies will not be suffi- 
cient to determine all the force constants. Only for 
highly symmetrical molecules is the number of force 
constants so greatly reduced that they can be deter- 
mined from the spectroscopic data. In this situation we 
have lowered the aim and searched for a method which 
only requires one to know the normal frequencies and 
not the force constants. The correct assignment of fre- 
quencies to the measured infrared and Raman data is 
still a great task for large molecules but it has been 
achieved in a number of cases. We shall show that by 
using the normal frequencies of the internal modes one 
is able to determine the average of the isotropic mean- 
square amplitudes for each type of atom in the mol- 
ecule. Thus our approach does not allow one to deter- 
mine the exact values of the internal mean-square 
amplitudes for each atom, but we obtain averages 
which are correct to about 10% of the order of mag- 
nitude. These isotropic averages can then be compared 
with the standard errors of the components of the 
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vibration tensors of the atoms. In this way we find a 
basis on which to judge whether a determination of the 
thermal rigid-body parameters from the uncorrected 
vibration tensors of the atoms is appropriate. 

We first discuss the physical assumptions which we 
make and the mathematical methods which we use. 
Then we derive a rough formula which allows us to 
estimate the contributions of the internal modes to the 
vibrations of a given atom only from the number of 
atoms in the molecule and from the mass of the re- 
spective atom. Finally we present numerical results 
for the structures of benzene, naphthalene and 
anthracene. 

2. The contributions of  the internal and external modes 

In the preceding paper (Scheringer, 1972) we derived 
a lattice-dynamical matrix representation of the aniso- 
tropic vibration tensors of the atoms in the unit cell 
in which not only the single atom but all atoms of the 
cell are considered. We obtained equations which relate 
the mean-square amplitude matrix of the vibration 
tensors to the dynamical matrices of the crystal. We 
shall use these equations in order to derive the rela- 
tions needed for this investigation, between the mean- 
square amplitudes and the frequencies. We consider 
the case T > 0 ° K  and apply equation (12) of the pre- 
ceding paper which we list for reference as 

kBT 
D =  2 N -  ~ (RA- W[1 + R * A - ' F R * ) ,  (1) 

q 

where the factor kBT has been extracted. For each wave 
vector el we have 

1 h(.oj coth [ hf.Oj 
A-J-x= o9--~j ;1-'J- 2kBT \2kBT] " (2) 

The notation is as used in the preceding paper 
(Scheringer, 1972). For Z molecules in the unit cell, 
each consisting of n atoms, the matrices in equation (1) 
are of the order 3nZ. R is unitary, i.e. P , = R  -~, and A 
and F are diagonal; their elements are defined in equa- 
tion (2). Since R is unitary we can gain the essential 
relation for our problem by applying the theorem of 
the trace invariance for unitary transformations. For 
each wave vector in equation (1) we have 

3nZ 

A~-XFj=trace (RA-WR) = 
J = l  

trace (R*A-WR*) .  (3) 

With equations (1) and (3) we obtain 

3nZ 

t r ace (D)=  N qz~_~.= (4) 

In the following we want to separate the contributions 
of the internal and external modes, which appear 
simultaneously in equation (4). In this regard we 
assume that the forces among the molecules in the 

crystal can be neglected in comparison with the forces 
among the atoms within the molecule. Thus we assume 
that the internal modes of a molecule in the crystal are 
the same as those of a molecule in the gaseous state. 
This assumption is largely confirmed by the fact that 
the infrared and Raman frequencies of a molecule are 
only slightly split when the molecules condense into a 
crystal. Taking the assumption as valid, we can replace 
the average over all wave vectors q in equation (4) by 
one member with q = 0  for the internal modes of the 
molecules. Then we obtain 

Z(3n--6) 

trace (D)=kBT ~ ( A ; X r 9  i"' 
j = l  

+ (Aj G ) .  • (5) 
q j = X  

Now we want to transform equation (5) so that we 
obtain the contribution of only one molecule. Since we 
assume that the Z molecules are (chemically) equiv- 
alent the internal modes for the Z molecules are the 
same. The contributions of the external modes are 
equal for the Z molecules if the molecules are in sym- 
metrically equivalent positions. If there is more than 
one molecule in the asymmetric unit, the contributions 
of the external modes need not be exactly the same. 
However, they tend to be the same to a sufficient 
approximation since the summation is taken over all 
modes qj. Thus we obtain from equation (5) 

1 ._L n 
- - t race  (D)= ~ m,(U~ 1 + U~2+ U~3)=C i"t + C  ¢'t, (6) 
Z r = i  

where 
3n--6 

c i n t = k n T  ~, (A71r jy  "' (7) 
j = l  

represents the contribution of the internal modes of a 
molecule, and 

k T 6zlv 
CeXt __ B ~ '  r A - z  F ~ext - ~ 7 - / _ , ~  j pq (8) 

~,L., q j = l  

represents the contribution of the external modes of a 
molecule in the crystal. If we denote the isotropic 
average of the rth atom by 

U r  i s o - -  l ( T T l l  , - ~ - t ~ ,  + U~ 2+  U~3),  (9) 

valid for internal and external modes, we obtain from 
equations (6), (7), and (9) 

= ~ llin.t (10) C int 3 m r  ~ r , l s o  
r = l  

for the internal modes of the molecule, m, is the mass 
of the rth atom. 

Equation (10) has the disadvantage that it contains 
only the products - ~,l.t In order to eliminate the m r t Y  r , i so .  

mass mr we have to make a further assumption: the 
product m, Ur.i~o is constant for all atoms in the mol- 
ecule. This does not hold exactly, but may be con- 
sidered as a rule which is valid to about 10 % relative 
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error. For a one-dimensional oscillator with constant 
frequency ~, the rule is strictly valid as can be seen 
from U 2 mr=E/o~ 2. With many normal modes in a 
molecule the single atoms can take part in a particular 
mode in various ways; however, in the average over 
all modes these differences are annulled to a large 
degree so that the 'product rule' holds to a sufficient 
approximation. We can check it with Johnson's (1970) 
results for cyclobutane and benzene. Johnson's data 
(from his Fig. 9.2) for cyclobutane lead to the values 
of 0-0165, 0.0167, and 0.0166 mole.it  2 of the products 
m/lint for the atoms HI, H2, and C respectively. For r I J r ,  iso 

the H and C atoms of benzene we find the values of 
0.0140 and 0.0153 mole..~ z respectively, which differ 
by about 9%. Thus taking the 'product rule' to be 
valid we obtain for the isotropic average of the internal 
contributions for the atoms of mass mr 

C i n t  
u i n t  __ (11) 

,.tso 3nmr" 
u t n t  ,.~o can be calculated solely from the frequencies of 
the internal modes by using equations (2) and (7). The 
ratio of the internal contribution to the total (internal 
plus external) is then given by 

"i~/]" int  
v l n t  - -  - - - r . , s o  (12) 
- - r . i s o  U l l  1_ U22_[_ U 3 3  , 

where the U~ * are determined from diffraction data. 
With the results obtained so far we can examine 

whether one is likely to determine too large values for 
the components of the rigid-body vibration tensors 
TLS from the vibration tensors U, of the individual 
atoms, when the Ur were not corrected for the contribu- 
tions of the internal modes. For this examination we 
have to know C int and the components U~ ~ for all 
atoms of the molecule. On the one hand we obtain 
from equation (6) 

C ~*t= ~ mr(U~ a + U~2+ U33)- cint. (13) 
r = l  

On the other, C e*t can be calculated from the rigid- 
body vibration tensors as follows. If we assume the 
molecules to be rigid then equation (1) also holds for 
molecular crystals provided we attach the appropriate 
meaning to the symbols used :* all matrices in equation 
(1) are of order 6Z x 6Z, A contains the 6Z frequencies 
of the external modes, and R the 6Z eigenvectors. D is 
the mass-weighted mean-square amplitude matrix 
consisting of 6 x 6 blocks. The Z diagonal blocks of 
D, D~, s =  1 , . . .  Z, are obtained as follows: the vibra- 
tion tensors TLS of the Z molecules are first expressed 
in the principal inertial system with origin at the centre 
of gravity. Then the tensors of the sth molecule are 
ordered into a 6 x 6 matrix 

[ T i  ST~ 
G~= \-S-I--L- ] (14) 

• A full proof of this statement will be given in a forth- 
coming paper. 

and a mass-normalizing transformation 

Din°' = Q-1Gs(Qr) - '  (15) 

is applied. (The superscript 'mol' indicates the mol- 
ecular crystal.) Q- I  is diagonal. The first three ele- 
lnents of Q - I  are the total mass of the molecule, M, 
and the second three elements are the three principal 
moments of inertia, I1, I2,/3, referred to the centre of 
gravity. Now, for the molecular crystal we obtain from 
equation (1) 

trace (D m°~) = Z C  °x'. (16) 

If we assume the contributions of the external modes 
to be the same for each molecule, which always holds 
for symmetrically equivalent molecules, then 

trace (Dm°~) = M ( T  n + T 22 + Ta3)+ I lL  n 

+ I2L22+ I3L33=C TM. (17) 

C e*t of equation (17) can now be compared with C e*t 
of equation (13). In an actual structure determination 
the two values of C *x' should be equal within the limits 
of experimental error. If C e*' of equation (17) is found 
to be larger, the diagonal elements of T and L were 
incorrectly determined because the contributions of 
the internal modes were neglected. We finally remark 
that equations (13) and (17) are generally valid within 
the limits of the physical assumptions discussed and 
that C ~*' of equation (17) does not depend on the 
particular method that has been used to determine the 
components of T and L. 

The development of equation (1) has yielded three 
results: we were able to separate the mean-square 
amplitudes with respect to internal and external modes 
[equations (7) and (8)]; we were able to determine the 
isotropic average of the contributions of the internal 
modes of the molecule for each sort of atoms [equation 
(11)]; and we found a criterion to examine the com- 
ponents T u and Lu for possible contributions of inter- 
nal modes [equations (13) and (17)]. 

3. An approximate formula 

Since there are many difficulties with large molecules 
in measuring and assigning all normal frequencies, it 
would be useful to gain approximate formulae for 
assessing the contributions of the internal modes 
without knowing the normal frequencies. The possib- 
ility of obtaining approximate formulae of this type 
arises from the fact that with equation (7) one does not 
need to know each single frequency but only the value 
of the sum of all frequency terms. 

With increasing number, n, of atoms in the molecule 
the contributions of the internal modes to the vibration 
tensors increase rapidly. There are essentially two 
reasons: (I) the number of internal modes in the mol- 
ecule is 3n-6, and (2) new vibrations with low fre- 
quencies appear when n increases. It is particularly the 
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low-frequency vibrations which contribute to the vibra- 
tion tensors. If one assumes to a rough approximation 
that the effect of the low-frequency vibrations increases 
with n, one obtains 

cint=(3n-6)na (18) 

and, with equation (11), 

i n t  _ mr Ur.iso- ( n -  2)a,  (19) 

where a is a constant. The value of a can be deter- 
mined from molecules whose normal frequencies are 
known. We have calculated a for benzene, naphthalene, 
and anthracene, cf. section 4, and found the average 
a=0.0015 mole.A 2. With the known value of the con- 
stant a, equations (18) and (19) can be used to assess 
the contributions of the internal modes to the vibra- 
tion tensors for other molecular crystals. Fialkovskaya 
& Nefedov (1968), who carried out comparative meas- 
urements on anthracene and acridine, point out that 
with molecules of lower symmetry the low frequency 
vibrations occur more frequently. The low frequencies 
are mainly attributed to the non-planar vibrations of 
the molecule. Thus it is quite possible that for mol 
ecules of lower symmetry than benzene, naphthalene, 
and anthracene, equations (18) and (19), with a =  
0.0015 mole.A 2, will provide, for the contributions of 
the internal modes, an estimate which is too low. 

4. Numerical  results 

As examples we have used the structures of benzene, 
naphthalene, and anthracene. These structures are 
particularly suitable because they have frequently been 
studied by X-ray and neutron diffraction as well as by 
spectroscopic methods. With benzene, even the inter- 
atomic force constants are known and, for the internal 
vibrations, Johnson (1970) has calculated the atomic 
mean-square amplitude tensors which we shall use for 
comparison with our own results. 

The temperature factors of benzene were deter- 
mined by Cox, Cruickshank & Smith (1958), those of 
naphthalene by Cruickshank (1957a), and those of 
anthracene by Cruickshank (1956, 1957b). The vibra- 
tion tensors of the hydrogen atoms could not be deter- 
mined from the X-ray data; we have calculated them 
from the rigid-body vibration tensors T and L. This 
does not give completely correct values, however; in 
equation (6) the contribution of the hydrogen atoms 
amounts only to about 10% owing to the small mass 
of the hydrogen atoms. The normal frequencies for 
benzene were taken from a paper by Mair & Hornig 
(1949). For naphthalene we used the frequencies given 
by Luther & Drewitz (1962). A somewhat different 
assignment of the Raman frequencies was given by 
Suzuki, Yokoyama & Ito (1968); the use of their fre- 
quencies, however, did not lead to significantly dif- 
ferent results. With anthracene, the assignment of the 
normal frequencies to the experimental data differs to 

a large degree from author to author. We used the 
infrared frequencies from Chafik & Mecke (1968) and 
the Raman frequencies from Suzuki, Yokoyama & 
Ito (1968). We also tried the normal frequencies as- 
signed by Brigodiot & Lebas (1969); the results ob- 
tained differ only slightly from those which we give 
below and so we do not present them here. It seems 
that the different assignment is only of minor impor- 
tance, at least for the higher frequencies, since in equa- 
tion (7) only the sum over all frequency terms is needed. 

The results of our calculations are presented in 
Table 1, with T =  292 °K. In the first row the values for 
C i"t of equation (7) are listed in units of mole.A2; the 
second row contains the corresponding values for the 
high temperature approximation, F j = I .  The data 
show that the high temperature approximation is not 
appropriate and gives values which are rather too 
small. The reason is that at room temperature, the 
frequency obtained from hco=kBT is only 202 cm -1 
which is much smaller than many of the normal fre- 
quencies of the molecules. Thus for small molecules 
particularly, the high temperature approximation does 
not hold. 

Table 1. Contributions of the internal modes 

Naph- Anthra- 
Benzene thalene cene 

C int 0-526 1-197 2.661 mole.A2 
Ctntr-,oo 0-252 0"738 2"016 
Ulntc,iso 1"22 1"85 3"08 x 10-3 A2 
UlntH,iso 14"62 22"16 36"96 
Vintc.iso 1"70 3"25 6"79 x 10-2 
Vtnt tt,tso 11 "84 22-39 39"14 
I 1 10"2 19"6 28"4 x 10-2 
1 2 20"4 27"7 42"8 
I 5 37"1 41"5 56"2 
I 10 56"2 55"5 65"8 
~t 410 176 96 cm-1 
32 410 285 136 
n 12 18 24 
a 1-46 1.39 1.68 x 10-3 mole./~,2 

In order to compare our value of C lnt of 0.52628 
mole./~ 2 for benzene with Johnson's results, we have 
calculated C ant from Johnson's (1970, Fig. 9.2) r.m.s. 
amplitude data by using equations (9) and (10). We 

tn t  obtained C =0.52618 mol.• which is in very good 
agreement with our value, although our source of 
spectroscopic data (Mair & Hornig, 1949) is different 
from Johnson's (Miller & Crawford, 1946; Crawford & 
Miller, 1949). 

In the next four rows of Table 1, the values of Trint V r ,  i so  

are listed for carbon and hydrogen atoms respectively. 
Our fri,t values for benzene compare well with those V r ,  i s o  

which we have calculated from Johnson's (1970, Fig. 
9.2) data, namely 0-00127 and 0.01397/k 2 for carbon 
and hydrogen respectively. Our value of 0.00185 A 2 
for the carbon atoms of naphthalene is a little larger 
than the mean value of 0.00167 A 2 which we have cal- 
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culated from Higgs's (1955) data. Higgs based his cal- 
culation on the high temperature approximation, 
Fj = 1, but our high temperature value of 0.00114 A 2 is 
smaller than Higgs's value. Probably these discrepan- 
cies are to be attributed to deficiencies in Higgs's force 
constant model for the naphthalene molecule. The 
contributions of the internal modes to the vibration 
tensors are considerable for the carbon atoms in an- 
thracene and for the hydrogen atoms in all three mol- 
ecules. The contributions of the internal modes to the 
vibration tensors of the carbon atoms in naphthalene 
and anthracene are about as large as the standard 
deviations a(U~ ~) obtained by Cruickshank. Cruick- 
shank (1956) gives a(Ug)=0.0025 A z for anthracene, 
which has been estimated from the X-ray data. This is 
somewhat smaller than the contributions of the internal 
modes of 0.0031 A z so that these become important 
with respect to the accuracy obtained. This may ex- 
plain why the fit of the thermal rigid-body parameters 
T and L to the vibration tensors U, is not convincing. 
Cruickshank calculates a(U~)=0.0043 .~2 from the 
r.m.s, difference between the U~k(obs) and U~k(calc TL) 
which is notably larger than 0.0025 ,~2. For naphtha- 
lene, Cruickshank (1957a) does not give estimated 
standard deviations derived from X-ray data; however, 
since the R values for naphthalene and anthracene are 
about equal, we may also assume a(Ug)=0.0025 A 2 
for naphthalene. The contributions of the internal 
modes with 0-0018 A 2 are comparatively small and 
thus do not seem to be very important. This is in agree- 
ment with the reasonable TL fit of a(Ug)=0.0028 .~2, 
obtained by Cruickshank. 

Pawley (1971) refined the contributions of the 
internal modes to the vibration tensors of hydrogen 
and deuterium atoms by using neutron diffraction data. 
He found the parameters describing these contribu- 
tions to be statistically highly significant. It is thus 
interesting to compare Pawley's results with ours. 
From Pawley's anisotropic data for the deuterium 
atoms we have calculated the isotropic average and 
multiplied by 2 to obtain the isotropic average for 
hydrogen atoms. We obtain 0.022, 0.020 and 0.017 A 2 
for naphthalene, anthracene, and pyrene respectively. 
The naphthalene value is in full agreement with our 
value of 0.022 A 2, whereas Pawley's anthracene value 
of 0.020 ~2 is significantly smaller, and so is his pyrene 
value of 0-017 A 2 for which we obtain 0.036 ~z by 
using the approximate formula equation (19). These 
results seem to confirm that Pawley's refinement of the 
thermal parameters of naphthalene is the best on an 
absolute standard, reaching R = 3 . 3 % ,  whereas the 
refinements of the anthracene and pyrene parameters 
are not as convincing. 

We have also made the comparison of the values of 
C ~xt from equations (13) and (17). With the values of 
C ~t listed in Table 1 we obtain 

C e~t [equation (13)] 16.64, 20.46, 20.46 mole.,~ 2 
C ext [equation (17)] 17.31, 21.67, 23.04 mole.A 2 

for benzene, naphthalene, and anthracene respectively. 
With all molecules C ext [equation (17)] is larger than 
C ex' [equation (13)] by about the value of C in'. [The 
benzene data are the least reliable ones since the dia- 
gonal components of the L tensor cannot be uniquely 
determined from the U tensors of the carbon atoms. 
We have thus used the value of Lll estimated by Cox 
et aL (1958).] 

The numerical data of this comparison clearly show 
that, with the usual least-squares determination of the 
components of T and L from the uncorrected com- 
ponents of the U tensors, the components T" and L ,  
have been found to be too large. It seems that the T"  
are mainly concerned since in equation (17) the term 
M ( T  11 + T 2z + T 33) contributes about 75 % of the total 
with all three molecules. 

The next four rows in Table 1, marked by I1, I2, 
I5 and I10 are given to illustrate the large effect of 
the low frequencies on C int. I1 represents the part of 
C l"t that arises only from the lowest frequency. I2, 
I5, and I I0  represent the parts that arise from the two, 
five and ten lowest frequencies respectively. In the two 
following rows, marked by ~ and ~2, the two lowest 
frequencies are listed in units ofcm-~.  With anthracene 
the lowest frequency of 96 cm -~ already contributes 
28.4% to C ~"', and with all molecules the ten lowest 
frequencies contribute more than 55 % to C ~"t. The 
final two rows in Table 1 list the number of atoms in 
the molecule, n, and the constant a of equations (18) 
and (19). a was calculated from the known values of 
C ~"̀  and n with the aid of equation (18). Of course, a is 
only approximately constant. We find that a =  
0.00150 mole.A 2 with a mean deviation of 0.00011 
mole.A z for the three molecules. A further value of a 
can be obtained from Johnson's (1970, Fig. 9.2) r.m.s. 
amplitude data of the cyclobutane molecule. From 
Johnson's data we calculate Ci"t= 0.59638 mole.A 2 and 
with n =  12 we obtain a=0.00166 mole.,~ 2. Finally, the 
constant a can also be calculated from Becka & 
Cruickshank's (1963) data of hexamethylenetetramine, 
although these authors have only applied an approx- 
imate force constant model by assuming rigid CH2 
groups. We find ll~n. t =0.0020 A 2 and U ~"t - 

~C.lSO N , i s o  - -  

0"0016/~2. With n = 2 2  we obtain a=0.00120 mole.A 2 
from the carbon atoms, and a=0.00112 mole.A 2 from 
the nitrogen atoms. These somewhat lower values of 
the constant a may be due to the high symmetry of the 
(CHE)6N 4 molecule, 43m, and/or to the inaccuracies of 
the force constant model used. 

5. Conclusions 

We have seen that the contributions of the internal 
modes to the vibration tensors U increase largely with 
increasing number, n, of the atoms in the molecule. 
With larger molecules, having n > 15, the contributions 
of the internal modes are already considerable, and 
with accurate values of the components U gk they 
should not be neglected when determining the TLS 
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parameters. With modern experimental methods 
structures having molecules of the size of anthracene 
can be refined to give R values of 3.5-5.0 %, cf. e.g. 
Pawley (1971). If we assume an R value of 6% to hold 
as a standard of quality, the standard deviations for 
carbon atoms will be about 0.0012 i t  2 for both X-ray 
and neutron data. According to Table 1, the contribu- 
tions of the internal modes for carbon atoms are 
about 0.0018 and 0.0031 A2 for n=12  and n=18  
respectively. For hydrogen atoms they are much larger 
with about 0.022 and 0-037 A 2 respectively. Thus 
it is obvious that with very accurate data and for 
molecules having n>  15 the contributions of the in- 
ternal modes cannot be neglected and thus give rise to 
errors in the TLS components if these are determined 
from uncorrected U tensors. If the U tensors of hy- 
drogen atoms are not corrected, one always obtains 
erroneous TLS components, even for small molecules 
(n < 15). 

As the comparison of the values of C ext of equations 
(13) and (17) with benzene, naphthalene, and anthra- 
cene has shown, the least-squares method of deter- 
mining the thermal rigid-body parameters from the 
uncorrected U tensors has to be applied with caution. 
It is likely that with the use of this method the contribu- 
tions of the internal modes will always be added to the 
TLS components and that this does not necessarily 
result in a bad fit of the TLS parameters. This view 
has also been expressed by Milledge (private communi- 
cation). The reasons why this can happen are as 
follows. With many internal modes the mean-square 
amplitudes may have such a form that they could also 
have arisen from the external modes. An example is 
the butterfly-type of vibration of a flat molecule whose 
mean-square amplitude could also be generated by a 
libration of the molecule about the corresponding 
axis. Thus a good fit of the TLS parameters to the un- 
corrected U tensors does not necessarily imply that the 
TLS parameters are correct, i.e. that they represent 
only the external modes of the molecule. A bad fit 
would indicate more appropriately the existence of 
the internal modes as a source of systematic error and 
perhaps yield TLS parameters which are physically 
more correct. However, it seems that in most cases 
the least-squares method, applied to the lancorrected 
U tensors, does not result in a bad fit so as to corre- 
spond to the contributions of the internal modes but 
rather it leads to a better fit resulting in erroneous 
components of TLS. 

For very accurate determinations of the TLS param- 
eters of molecules having n > 15 it is thus necessary to 
take care of the contributions of the internal modes by 
some means or other. One way of doing this is by 
Pawley's (1971) approach of introducing appropriate 
parameters in the refinement. Another possibility is 
to employ approximate force constants and to cal- 
culate the contributions of the internal modes to the 
U tensors explicitly, cf. Becka & Cruickshank (1963); 
Ellison et al. (1971). Perhaps subtracting the isotropic 

averages, as determined from equation (11), from the 
uncorrected U tensors would also lead to improved 
values of the TLS parameters, although in this case the 
certainly present anisotropy of the mean-square am- 
plitudes of the internal vibrations and the specific loca- 
tion of the atoms in the molecule would be neglected. 
Perhaps the reduction of the TLS components by a 
factor of C ext [equation (13)]/text[equation (17)] 
would lead to reasonable results if the uncorrected U 
tensors are used. Milledge (private communication) 
proposes to keep the components U u (calculated 
TLS) always smaller than the components U u (ob- 
served), since the latter contain the contributions of the 
internal modes whereas the former should not. Which 
of these (approximate) procedures, or which combina- 
tion of procedures, proves to give the most accurate 
results remains a question for future investigation. 

Note added in proof." The constant a has been calculated 
for some further molecules for which the mean-square 
amplitudes are known. We give the molecule, the value 
of a in mole.A 2, and the reference in sucession: cyclo- 
propene 0.00211, cyclopropene- d4 0.00282, cyclopro- 
pane 0.00152, cyclopropane-d60-00203 (Cyvin & Hagen, 
1970); 1,2,5-oxadiazole 0.00239, 1,2,5-thiadiazole 
0.00259, 1,2,5-selendiazole 0.00299, furan 0.00178, 
furan-d4 0.00221, thiophene 0.00206, thiophene-d5 
0-00235 (Cyvin, Cyvin, Hagen & Markov, 1969); pro- 
pane 0.00211, propane-da 0.00329, (Cyvin & Vizi, 1970) 
P406 0.00518, P4010 0.00365, (Cyvin & Cyvin, 1971). 
It seems that a constant value of a can only be used 
for certain types of molecules. Thus for hydrocarbons 
and CHON compounds, which possess a system of 
strong bonds, a is approximately constant. The mean 
value of a for the quoted compounds of that type is 
0.00197 mole.A 2 and is somewhat larger than that given 
in the paper. If, however, weaker bonds are formed 
with heavy atoms like sulphur and selenium or with 
inorganic compounds the mean-square emplitudes and 
thus the value of the constant a are enlarged. 
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Elastic Properties of Ammonium Oxalate Hydrate, Ammonium Hydrogen 
Oxalate Hemihydrate, and Ammonium Tetroxalate Dihydrate 
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The elastic constants of the two orthorhombic crystals (NH4)2C204. H20 and (NH4)HC204.½H20 were 
determined by diffraction of light by ultrasonic waves. These constants and those of the triclinic 
(NH4)H3(C204)2.2H20 previously measured are correlated with the crystal structure. All three crystals 
show extreme elastic anisotropy which may be explained by the layer-like packing of the oxalate groups. 
The minimum elastic stiffness is observed normal to the C204 planes, whereas the direction of the maxi- 
mum elastic stiffness may be correlated with the course of the periodic bond chains. It is shown that 
hydrogen bonds make a considerable contribution to the elastic properties of crystals. Correlations be- 
tween elastic behaviour, morphology, and optical properties are discussed. 

Introduction 

In the present paper the elastic properties of three 
ammonium salts of oxalic acid are investigated: am- 
monium oxalate hydrate [(NHa)zCzOa. HzO, point 
group 22], ammonium hydrogen oxalate hemihydrate 
(NH4HC2Oa'-2t2H2 O, point group mmm), and ammo- 
nium tetroxalate dihydrate [NH4Ha(CEOg)E.2H20, 
point group T], which for brevity will be referred to as 
AO, AHO and ATO respectively. 

Because of its polar properties AO has attracted 
special attention. Vasilewskaya, Kuznetsova, Rez & 
Sonin (1968) have reported large electro-optical effects, 
Izraelenko, Orlov & Kopsik (1968) and Orlov (1969) 
have made use of AO in producing optical second- 
harmonic generation and, finally, Fournel & Vergnoux 
(1971) have performed infrared spectroscopic measure- 
ments. It seemed worthwhile to extend the measure- 
ments to the determination of the elastic constants of 
AO as these have not been measured previously. 

There seem to be no reports on the physical proper- 
ties of AHO in the literature. 

The elastic constants of ATO have been measured 
by us (Kfippers & Siegert, 1970). In the present paper 
an attempt will be made to give a structural interpreta- 
tion of the anisotropic elastic properties of ATO as 
well as of the two other oxalates. 

Methods 

Single crystals of AO and AHO were grown from 
aqueous solutions at 35 °C (Ktippers, 1972a). 

Sound velocities were measured by the Schaefer- 
Bergmann method as improved by Haussfihl (1956): 
standing ultrasonic waves of about 15 Mc/s were ex- 
cited in rectangular specimens (average dimension 1 
cm, tolerance lp). The ultrasonic wave causes the dif- 
fraction of a light beam from a mercury lamp (2= 
546.07 nm). The beam is focused through the crystal 
onto a film placed at a distance of about 2 m. Measure- 
ment of the distance between the diffracted light spots 
yields the sound velocity. 

In order to determine the elastic constants of the 
two orthorhombic crystals, the velocities of the lon- 
gitudinal waves propagating along [100], [010], and 
[001] were measured. Transverse waves in these direc- 
tions produce no measurable diffraction of light be- 
cause the elastic displacement in this case is parallel to 
one of the principal axes of the elliptical section of the 
indicatrix (Ktippers, 1966). Furthermore, the velocities 
of the quasilongitudinal and quasitransverse waves in 
the directions [110]', [101]', and [011]' (as related to a 
Cartesian coordinate system with axes ei parallel to 
ai) were measured. The third wave in these directions 
is a purely transverse wave and is, for the same reasons 


